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The steady-state and time-dependent flow transitions observed in a well-charac- 
terized viscoelastic fluid flowing through an abrupt axisymmetric contraction are 
characterized in terms of the Deborah number and contraction ratio by laser- 
Doppler velocimetry and flow visualization measurements. A sequence of flow 
transitions are identified that lead to time-periodic, quasi-periodic and aperiodic 
dynamics near the lip of the contraction and to the formation of an elastic vortex at  
the lip entrance. This lip vortex increases in intensity and expands outwards into the 
upstream tube as the Deborah number is increased, until a further flow instability 
leads to unsteady oscillations of the large elastic vortex. The values of the critical 
Deborah number for the onset of each of these transitions depends on the contraction 
ratio b, defined as the ratio of the radii of the large and small tubes. Time-dependent, 
three-dimensional flow near the contraction lip is observed only for contraction 
ratios 2 < p < 5 ,  and the flow remains steady for higher contraction ratios. Rounding 
the corner of the 4 : 1 abrupt contraction leads to increased values of Deborah number 
for the onset of these flow transitions, but does not change the general structure of 
the transitions. 

1. Introduction 
Viscoelastic fluid flows in many complex geometries are observed to develop 

instabilities at low flow rates which are absent in the flow of purely Newtonian 
liquids. These instabilities develop at very low Reynolds numbers and depend solely 
on the elastic nature of the fluid. Elastic instabilities have been observed in many 
flows including Taylor-Couette flow (Giesekus 1972 ; Larson, Shaqfeh & Muller 
1990), flow around a sphere (Bisgaard 1983), flow in a cone-and-plate rheometer 
(Magda & Larson 1988) and motion in a variety of entry flows (Boger 1982, 1987). 
The great variety of nonlinear transitions that have been observed qualitatively and 
the importance of many of these complex flows in industrial processing of polymers, 
coatings, and colloidal systems has been a large part of the motivation for the intense 
interest in numerical simulation of viscoelastic flows using a variety of constitutive 
equations. 

Although very motivating, few of these experiments have been quantitative 
enough to provide benchmarks for comparison with theory and computations. Such 
comparisons are an important next step in the development of the fluid mechanics 
of viscoelastic liquids. To meet this objective, the experiments must be carried out 
with a rheologically well-characterized fluid and must be accurate enough to describe 
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Fully developed 
upstream profile 

FIGURE 1. Schematic diagram of the axisymmetric contraction geometry. The contraction ratio 
is defined as j3 = RJR,  and the dimensionless vortex reattachment length is x = H,/2R,. 

sufficiently both the spatial and temporal symmetries of the flow and provide 
quantitative measurements that  can be directly compared with calculations. The 
highly accurate technique of laser-Doppler velocimetry (LDV) has been used with 
great success in earlier investigations of inertial instabilities in Newtonian flows. The 
wide dynamic range and non-invasive features of laser-Doppler velocimetry have 
permitted accurate documentation of the complex sequence of hydrodynamic 
transitions leading to time-dependent flow regimes in Taylor-Couette flow and 
Rayleigh-BBnard convection (Fenstermacher, Swinney & Gollub 1979 ; Gollub & 
Benson 1980). In  this paper we use the LDV technique coupled with conventional 
flow visualization methods to document the sequence of nonlinear transitions 
observed in the creeping flow of a highly elastic, non-Newtonian fluid through an 
abrupt axisymmetric contraction. 

The basic geometry for an abrupt axisymmetric contraction flow is shown in figure 
1 and consists of a large upstream tube of radius R, which contracts suddenly to a 
smaller tube with radius R,. The fluid accelerates from a fully developed upstream 
profile to  another fully developed profile a t  some distance downstream of the 
contraction plane. A recirculating secondary flow may also be present in the corners 
of the large tube immediately upstream of the contraction plane, depending on the 
flow rate and rheology of the viscoelastic fluid. Such entry flows contain significant 
shearing and extensional components and are encountered commonly in many 
commercially important polymer processing applications, such as extrusion and fibre 
spinning. In each case processing limits are encountered a t  low Deborah numbers 
owing to the onset of unstable flow regimes; see Petrie & Denn (1976) for a review 
of flow instabilities in polymer processing. 

The fluid mechanics of contraction flows is one of the most thoroughly studied 
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experimental systems for complex viscoelastic motion and has been reviewed in 
detail by Boger (1982, 1987) and by White, Gotsis & Baird (1987). A myriad of 
interesting flow phenomena have been observed with increasing Deborah numbers. 
As the flow rate through the contraction is increased a viscoelastic fluid undergoes 
transitions from the low-flow-rate, Newtonian-like behaviour to regimes which may 
exhibit greatly enhanced vortex size or streamlines that diverge away from the 
centreline at some distance above the contraction plane. At high flow rates the large 
vortex observed in many viscoelastic entry flows ultimately becomes unstable, 
resulting in large fluctuations in the flow field and gross distortion of the viscoelastic 
material downstream of the contraction. It has also been observed by several authors 
(Lawler et al. 1986; Boger, Hur & Binnington 1986; Evans & Walters 1986, 1989; 
Raiford et al. 1989) that these transitions may proceed via the formation of an 
independent elastic lip vortex a t  the re-entrant corner where the upstream tube joins 
the downstream tube. 

These previous investigations have yielded the first glimpses of the rich nonlinear 
structure of contraction flows and have demonstrated the sensitive dependence of the 
observed flow transitions on the following parameters : the contraction ratio, the 
viscoelastic fluid rheology for both polymer melts and solutions, the details of the 
flow geometry including whether it is planar or axisymmetric, and the precise shape 
of the contraction lip, i.e. whether it is sharp or rounded. The comprehensive reviews 
by Boger (1987) and White et al. (1987) describe these effects in greater detail. 

The formation of the secondary flows is so pronounced that the flow through an 
axisymmetric contraction has been made a benchmark problem for numerical 
simulations of viscoelastic flows (Hassager 1988). Unfortunately the violent effects 
on the velocity and stress fields caused by rapid acceleration of the fluid through the 
Contraction, especially near the re-entrant corner, make this problem extremely 
difficult, and reliable numerical results a t  moderate Deborah numbers are only just 
beginning to appear (Marchal & Crochet 1987; Coates, Armstrong & Brown 1991). 

The importance of fluid elasticity in these flow transitions has been characterized 
by the Deborah number defined as 

h 
De = -, 

9- 

where h is a characteristic relaxation time for the viscoelastic fluid and 9- is the 
characteristic residence time for the flow geometry. The viscoelastic flow transitions 
described here develop a t  very low Reynolds numbers and at values of the Deborah 
number between 1 and 10. 

In  the past, most experimental investigations of these transitions have either 
involved qualitative techniques such as flow visualization or have attempted to 
correlate macroscopically observable quantities, e.g. excess pressure drop or vortex 
size, with flow parameters such as the Reynolds number and Deborah number to 
measure the relative importance of inertia and elasticity in the flow. Cable & Boger 
(1978a, b,  1979) investigated in great detail the flow of shear-thinning polymer 
solutions through axisymmetric contractions. They documented three distinct stable 
flow regimes as the flow rate was increased: a Newtonian-like creeping flow at very 
low flow rates, a vortex growth regime with a large steady recirculating vortex in the 
large upstream tube at moderate flow rates, and a divergingfiw regime at higher flow 
rates with the streamlines diverging away from the centreline. At a particular 
Deborah number the upstream flow became unstable and the large vortex was 
observed either to pulse symmetrically or develop an asymmetry and spiral around 
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the upstream tube depending on the flow conditions. By varying the rheological 
properties of the test fluids and the experimental conditions the competing effects of 
elastic, viscous, and inertial forces were demonstrated. Fluid inertia was found to  be 
stabilizing, requiring higher values of the Deborah number for the onset of flow 
instabilities. 

Subsequent experiments by Nguybii & Boger (1979) used highly viscous, elastic 
fluids with viscosities that remain nearly constant over many decades of shear rate. 
These semi-dilute polymer solutions are known as Boger fluids (Boger 1977/78 ; Boger 
& Nguybii 1978) and consist of a small amount of high-molecular-weight polymer 
dissolved in a very viscous solvent. Rheological data presented for a number of 
different Boger fluid formulations (Prilutski et al. 1983 ; Jackson, Walters & Williams 
1984; Binnington & Boger 1985) suggested that a t  low shear rates the viscometric 
properties could be modelled by the simple quasi-linear Oldroyd-B constitutive 
equation (Oldroyd 1950) which has subsequently been used extensively in numerical 
simulations. More recent experiments in transient shear flows (Mackay & Boger 
1987 ; Quinzani et al. 1990) have shown that a spectrum of relaxation times is needed 
to model the rheological behaviour of Boger fluids over a wide range of shear rates. 

The flow transitions observed in visualization experiments with Boger fluids by 
Nguybii & Boger agreed qualitatively with the observations for shear-thinning 
viscoelastic fluids. These results are described in some detail because of their 
relevance to  the experiments presented here. At low flow rates (De + 1)  the motion 
was essentially Newtonian, with a steady axisymmetric flow that converged radially 
into the small tube and a small corner vortex upstream of the contraction plane in 
the outer corner of the large tube. This corner vortex is strictly a result of the 
Newtonian stresses caused by the kinematical constraints of the corner and its 
presence is predicted by applying the similarity solution of Moffatt (1964) to analysis 
of the local flow in this region. The size of this vortex, as measured by the distance 
it extends up the wall of the large tube, agrees very well with the size determined 
from calculations for a Newtonian fluid (Kim-E, Brown & Armstrong 1983). 
Increasing the flow rate, and thereby raising the Deborah number, once again gave 
rise to a sequence of flow transitions which ultimately led to  instabilities in the flow 
field. At moderate Deborah numbers (De - 1-3) the corner vortex increased greatly 
in size and expanded upstream. This large vortex then became asymmetric (De - 5 )  
and a t  higher Deborah numbers (De - 10) began to spiral around the upstream tube, 
resulting in large fluctuations of the vortex height. Finally at De - 15 these 
oscillations became aperiodic. 

The first quantitative measurements of the spatial and temporal structure in the 
nonlinear flow transitions which occur in a viscoelastic entry flow were presented by 
Muller (Muller 1986; Lawler et al. 1986). An automated two-colour laser-Doppler 
velocimetry system was used to study the flow of a highly elastic Boger fluid through 
a 4: 1 abrupt axisymmetric contraction. The fluid was a solution of 0.17 wt % 
polyisobutylene (PIB) in polybutene (PB) with a zero-shear-rate relaxation time of 
0.047 s. The most important result of this work was to show that at a relatively low 
critical Deborah number, De(OSc) z 0.80, the flow near the contraction lip became 
three-dimensional and all three velocity components exhibited time-dependent 
oscillations. The oscillation frequency was determined from the Fourier spectrum to 
be approximately 0.2 Hz and was found to increase with Deborah number. Hysteresis 
in the oscillation frequency was observed with a transition between the original time- 
periodic state and one with approximately twice the period. This behaviour may be 
indicative of a subcritical, period-doubling bifurcation. These oscillations were 
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confined to a small region near the contraction lip and were a precursor to the 
formation of a steady, two-dimensional, elastic vortex near the lip a t  a second critical 
Deborah number, De(li*) x 1.2. Subsequent growth of this vortex could not be 
observed because of constraints to the maximum attainable Deborah number that 
were imposed by the fluid rheology and construction of the experimental system. 

Visualization experiments reported by Boger et al. (1986) for 0.10 wt YO PIB/PB 
solutions also showed the formation of an elastic vortex near the contraction lip that 
seemed to be time-dependent. More importantly these authors document that this 
elastic lip vortex grows with increasing De and develops into a large elastic vortex 
that expands into the large upstream tube at  high Deborah numbers. The dynamics 
of this vortex are similar to that observed in the earlier experiments of Nguy6fi & 
Boger. 

Studies by Boger and coworkers (Boger et al. 1986; Boger 1987) for different fluids 
and various contraction ratios have shown the sensitivity of the formation of the 
elastic lip vortex to these parameters. For example, for a particular PIB/PB Boger 
fluid the distinct lip vortex was seen only for contraction ratios less than 8 :  1. In 
higher contraction ratios the corner vortex expanded inwards towards the lip until 
it covered the contraction plane and subsequently grew upstream. However, for 
polyacrylamide (PAC)/cornsyrup (CS) Boger fluids a lip vortex is observed only in 
a 2 : 1 contraction. The large vortices observed in higher contraction ratios resulted 
from growth of the corner eddy, not from the formation of an independent lip vortex. 
The role of time-dependent dynamics near the contraction lip on the formation and 
growth of this elastic vortex is not known. 

The differences in behaviour of the PIB/PB and PAC/CS Boger fluids in 
axisymmetric contractions has not been resolved, but may be caused by large 
differences in the extensional rheology of the two solutions. Experiments with 
polymer melts have shown conclusively that vortex growth occurs when the fluid 
exhibits a large increase in the uniaxial extensional viscosity with increased 
extension rate (White & Kondo 1977/78 ; White & Baird 1986). Reliable experimental 
data on the extensional rheology of Boger solutions is scarce ; however, it  appears 
that both PAC/CS and PIB/PB fluids do exhibit extremely high elongational 
viscosities (Jackson et al. 1984; Jones, Walters & Williams 1987 ; Walters 1989). 
Hence vortex growth is to be expected for both solutions, as is observed 
experimentally. The experimental results described below suggest that the differences 
between the behaviour of the PAC/CS and PIB/PB solutions for each contraction 
ratio may result solely from changes in the sequence of nonlinear transitions for the 
flow caused by differences in fluid rheology. 

Here we report detailed laser-Doppler velocimetry measurements and flow 
visualization studies for the flow of a rheologically well-characterized Boger fluid 
through axisymmetric contractions with a wide range of contraction ratios 
(2 < ,8 < 8). The Boger fluid is a semi-dilute solution of PIB in PB and is more elastic 
than the one used in the earlier experiments of Muller (Lawler et al. 1986). Higher 
values of Deborah number are attained, allowing measurements of the evolution of 
the elastic lip vortex into the large vortex described by Boger et al. (1986). The results 
show that the formation of the elastic lip vortex and its subsequent growth with 
increasing De may be accompanied by the onset of three-dimensional, time- 
dependent behaviour in the flow adjacent to the contraction lip. These temporal 
instabilities are highly localized and thus not readily observable by using other 
simple flow visualization procedures. Experiments with different contraction ratios 
demonstrate that the structure of the dynamic behaviour near the lip is not solely a 
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function of the local kinematics but also depends on the flow conditions in the large 
upstream tube. By systematically varying the contraction ratio in these experiments 
we show the competing effects of total extensional strain and shear rate in the 
upstream tube on the flow transitions near the lip. The importance of the severe flow 
conditions near the re-entrant corner and the effect of the corner on the dynamic 
structure of the flow has also been investigated by substituting a smooth radius of 
curvature for the sharp corner at the entrance to the small downstream tube. 

2. Experimental 
2.1. Laser-Doppler velocimetry 

Laser-Doppler velocimetry (LDV) is a non-invasive technique for accurate 
measurement of point velocity components throughout a flow domain. In  these 
experiments, a two-colour LDV system (TSI, Model 9100-12) is used to measure the 
axial, radial and tangential velocity components in an axisymmetric contraction. 
The system is fully automated and has been described in detail by Raiford (1989). I n  
the current configuration velocities in the range 0.0140 cm/s can be measured. The 
beams from a 4 W Argon-ion laser (Lexel, Model 95-4) are focused to form a 
measuring volume of dimensions 5Ox50x250pm and the entire optic train is 
mounted on a three-dimensional translating table (TSI, Model 9500) enabling 
accurate movement of the measuring volume throughout the flow geometry. It was 
found that the highly viscous polybutene solvent used in these experiments already 
contained a sufficient density of scattering sites and no additional seeding particles 
were required in the test fluid. Steady-state velocity data are analysed using a dual- 
channel Spectrum Analyzer (Nicolet, Model 660B) to determine the Doppler 
frequency of the light scattered by particles flowing through the measuring volume. 
The LDV system is also used to measure transient or time-dependent velocity fields 
by employing frequency trackers (DISA, Model 55N20/21) to follow the Doppler 
frequency of the scattered light. The analogue output signals from the trackers are 
then passed to the Spectrum Analyzer and a fast-Fourier transform (FFT) is 
calculated in real time to  yield the frequency spectrum of any fluctuations in the 
velocity components. In  all time series data presented here, the total observation 
time T is 400 s, and the spectral resolution of the FFT is thus 1/T = 0.0025 Hz. 

The LDV technique has been used by several researchers (Yoganathan & 
Yarlagadda 1984; Lawler et al. 1986; Wunderlich, Brunn & Durst 1988 and Raiford 
et al. 1989) to evaluate quantitatively the steady-state kinematics of viscoelastic flow 
in planar and axisymmetric contractions. Lawler et al. demonstrated the accuracy of 
the experimentally measured velocity profiles by comparing their LDV results for a 
Newtonian fluid with the numerical finite-element simulations of Kim-E et al. (1983). 
Time-dependent velocity measurements in viscoelastic fluids have also been 
performed by Bisgaard (1983), Lawler et al. (1986) and Burdette (1989). 

2.2. Flow visualization 

The global flow dynamics were recorded on videotape by using a high-resolution 
video camera (Panasonic, Model D5000) with a macro lens (Minolta MD Macro 
50 mm, f/3.5). The flow field was illuminated by passing a single blue beam from the 
Ar-ion laser through a cylindrical lens to form an expanded plane of laser light. This 
sheet of light is positioned perpendicularly to  the camera to  illuminate a longitudinal 
section of the contraction geometry. Long time exposure or ‘streak ’ photographs 
were made to record the streamlines in the flow field. Streak photography has been 
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used extensively in previous experimental investigations to provide a qualitative 
representation of the streamlines in viscoelastic fluid flow through a number of 
complex geometries; see for example Walters & Webster (1982) and Binding et al. 
(1987). - 

- 

2.3. Flow circulation system and Jlow geometry 
The basic design for the fluids handling system has been described by Raiford (1989). 
The test fluid is circulated by a positive displacement pump (Moyno, Model no. 2L8) 
connected to a pressurized holding tank. From the tank the fluid passes through the 
test geometry and a valve network before emptying into an open collection tank. To 
eliminate the possibility of induced fluctuations in the flow, the recirculation pump 
is only used to recharge the 40-gallon holding tank and is not operated continuously. 
The fluid is forced through the test section solely by the static pressure driving force 
and the flow rate is controlled by adjustments to the valve system. In this mode of 
operation, experiments may be conducted continuously for approximately 1-2 h, 
depending on the flow rate. 

The axisymmetric contraction test geometry is shown schematically in figure 1. 
The contraction ratio is defined as /3 = RJR,. In these experiments the downstream, 
small tube radius is maintained at  R, = 0.318 cm (i in.), and the contraction ratio is 
adjusted by inserting annular sheaths of varying internal radius (R,) into the 
upstream tube. Contraction ratios of /3 = 2, 3, 4, 5 ,  6 and 8 have been studied. A 
cylindrical polar coordinate system ( r ,  8, z )  with its origin located at  the intersection 
of the symmetry axis and the contraction plane is used to specify position in the flow 
field. Positions upstream of the contraction plane correspond to z < 0. Dimensionless 
coordinates 6 = r/R2 and 6 = z /R2 are used to compare results from different 
contraction ratios. 

2.4. Fluid rheology 
Highly elastic, constant-viscosity liquids such as the fluid described here were first 
formulated by Boger (1977/78) and have since been used extensively in experimental 
investigations of viscoelastic fluid flow. The high viscosities of these so-called Boger 
fluids minimize inertial effects whereas the long relaxation times, comparable to 
those measured in polymer melts, lead to high Deborah numbers in the flow 
experiments. 

The viscoelastic test fluid used in these experiments is a Boger fluid consisting 
of a high-molecular-weight polyisobutylene (PIB) (Exxon Vistanex L- 120, 
M ,  x 1.2 x lo6 g/mol) which is dissolved in a small quantity of a hydrocarbon solvent, 
tetradecane (C,,H,, or C14), and then added to a highly viscous polymeric solvent of 
polybutene (PB) (Amoco L-100, M ,  x lo3 g/mol). The final fluid composition is 
0.31 wt ‘YO PIB, 4.83 wt YO C14 and 94.86 wt YO PB. This fluid formulation results in 
a viscoelastic test fluid with a moderate viscosity and high elasticity that makes it 
possible to attain higher values of De than was possible with the PIB/PB Boger 
fluids used in previous contraction flow experiments by Lawler et al. (1986) and 
Boger et al. (1986). The rheology of this fluid has been thoroughly characterized over 
a range of temperatures in linear viscoelastic, steady shear, and transient shear flow 
experiments (Quinzani et al. 1990). 

The viscous and elastic characteristics of the fluid are defined in steady shear flow 
by the viscosity 7 and the first normal stress coefficient Y,, and in small-amplitude 
oscillatory shear flow by the dynamic viscosity 7‘ and the elastic quantity 27”/0 
(Bird, Armstrong & Hassager 1987~) .  These material functions are shown in figure 2. 
The viscosity has a zero-shear-rate value 7, = 13.76 Pa s and is almost constant 
over four decades of shear rate. The shear-thinning behaviour of the polymeric 
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FIGURE 2. Viscous and elastic material functions for the 0.31 wt YO PIB/PB/C14 test fluid at 25 O C .  

Solid symbols are steady-shear-flow properties: 0 ,  viscosity 7 (Pa s ) ;  and A, first normal stress 
coefficient !PI (Pa 2). Hollow symbols are linear viscoelastic properties : 0 ,  dynamic viscosity 7' ; 
and A, 27"/w (Pa 2). Also shown are the results of fitting a four-mode Bird-DeAguiar model to 
the data. 

contribution to the total viscosity is masked in dynamic and steady shear 
experiments by the presence of the highly viscous PB/C14 solvent. Quinzani et al. 
demonstrated that this solvent is Newtonian with a constant viscosity, qs = 8.12 Pa s 
and makes no contribution to the elastic material functions over the shear rate 
and frequency ranges studied. The normal stress behaviour of the fluid is more 
complex, as evidenced in figure 2 by the first normal stress coefficient, 
'y,(= -[ T ~ ~ - T ~ ~ ] / ~ ~ ) .  At very low shear rates !PI is constant, Y1, = 8.96 Pa s2, 
indicating quadratic behaviour of the normal stresses, before the fluid begins to 
shear-thin at y w 0.1 s-l. A t  intermediate shear rates (3 < p < 30 s-l) the first 
normal stress coefficient exhibits an almost constant plateau before continuing to 
decrease monotonically at high shear rates. The data in figure 2 also demonstrate 
that in dynamic experiments the elastic quantity 2q"/o has the same zero-shear-rate 
asymptote as !Pl, in accordance with simple fluid theory (Bird et al. 1987a), but 
decreases far more rapidly a t  high frequencies. 

Quinzani et al. showed that the nonlinear behaviour in the first normal stress 
coefficient has been measured previously in other Boger fluid systems and appears to 
be the result of molecular interactions between the high-molecular-weight PIB 
polymer chains and the polymeric (PB) solvent. Systematic experiments show that 
this intermediate 'plateau' region persists as the concentration of PIB in the fluid is 
reduced and can be observed even in a very dilute 0.01 w t  % PIB/PB/C14 Boger 
fluid. Similar nonlinear behaviour in the first normal stress response of another 
thoroughly characterized Boger fluid has also been observed recently by other 
researchers (Laun & Hingmann 1990). The viscometric properties presented in 



Nordinear dynamics of viscoelastic flow 419 

Mode No. A, ( s )  vh (Pa s) 

1 2.755 1.108 
2 0.7361 1.677 
3 0.1094 1.657 
4 0.0098 1.211 

Solvent - 8.118 

TABLE 1.  Four-mode viscoelastic spectrum at 25 “C for the 0.31 w t  % PIB/PB/C14 
viscoelastic fluid used in these experiments (from Quinzani et al. 1990). 

figure 2 may thus be considered as typical of highly elastic Boger fluids prepared 
with moderate concentrations of polyisobutylene. 

The results of fitting a multimode differential constitutive equation to the 
experimental data are also shown in figure 2. In the past, Boger fluids have been 
modelled as dilute solutions of non-interacting, Hookean dumbbells in a viscous, 
Newtonian solvent (Prilutski et al. 1983; Binnington & Boger 1985). The resulting 
quasi-linear Oldroyd-B constitutive equation (Bird et al. 1987 b )  contains a single 
relaxation time and predicts constant viscometric properties qo and Yl, a t  all shear 
rates. Mackay & Boger (1987) showed that this model was inadequate for describing 
the transient behaviour of real Boger fluids even at  moderate frequencies. To model 
quantitatively the rheological properties of this fluid over all frequencies and shear 
rates we have used a spectrum of time constants which are determined from linear 
viscoelasticity. A nonlinear regression technique is used to obtain the set of {rk, A,} 
from the dynamic viscosity 7’ and dynamic rigidity 7” measured in small-amplitude 
oscillatory shear flow. The four-mode viscoelastic spectrum obtained by Quinzani 
et al. for this Boger fluid is presented in table 1. Steady and transient nonlinear shear 
flow properties of the test fluid have been modelled using the relaxation spectrum in 
table 1 together with a multimode formulation of the Bird-DeAguiar constitutive 
equation (Bird & DeAguiar 1983; DeAguiar 1983), in which the PIB chains are 
considered to be a semi-dilute solution of finitely extensible nonlinear elastic (FENE) 
dumbbells. Further details of the constitutive model and its fit to rheological data for 
this Boger fluid are contained in Quinzani et al. (1990). 

2.5.  Flow parameters 

The Reynolds number and Deborah number are used as scaling parameters to 
describe the inertial and elastic effects in the flow. A characteristic shear rate based 
on the downstream flow conditions is defined by j 2  = (v,),/R,, where (v,), is the 
average velocity in the small tube and R, is the downstream tube radius. A 
characteristic time for the flow is taken to be 9 = R,/(vz),  = pi’. To reflect the 
gradual shear thinning of the fluid elasticity at high shear rates, a shear-rate- 
dependent mean relaxation time A(.);,) is calculated from the viscometric properties 
of the fluid, 

The relaxation time in the limit of zero shear rate is then equivalent to the relaxation 
time obtained from an upper convected Maxwell (UCM) constitutive model (Bird et 
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FIGURE 3(a.b). For caption see facing page. 
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FIGURE 3. (a+) Viscoelastic flow through an abrupt 4:  1 axisyrnmetric contraction: (a) low flow 
rate with Moffat corner vortex, De, = 0.90, Re, = 0.008 (exposure time T = 16 s) ; (b) development 
of diverging streamlines and formation of lip vortex, De, = 3.40, Re, = 0.041 (T = 8 9); (e) elastic 
vortex growth, De, = 3.92, Re, = 0.056 (T = 8 5). (d) Coexistence of lip vortex and weak corner 
eddy as a single recirculation in a 6: 1 axisymmetric contraction at the same flow conditions as (b), 
De, = 3.40, Re, = 0.041 (T = 12 a). 
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al. 1987a), A, = !P1,/27,, = 0.325 s. Shear-rate-dependent Deborah and Reynolds 
numbers are defined respectively by 

In the current flow-loop configuration the maximum downstream shear rate 
achievable for the 4 :  1 contraction is ?, % 60 s-l which corresponds to a Deborah 
number De, = 4.6 and a Reynolds number Re, = 0.10. 

3. Experimental results 
We first present simple flow visualization results to illustrate the structure of the 

transitions observed throughout the axisymmetric contraction as a function of the 
Deborah number. Detailed steady-state and time-dependent LDV data are then 
presented in $3.2 to document the sequence of nonlinear transitions that occur in the 
flow near the contraction lip as the Deborah number is increased. The development 
of a diverging flow regime and the onset of another set of dynamics associated with 
instability of the large elastic vortex are described in $3.3. Finally in $3.4 we show 
the effect of curving the lip entrance on the dynamics and flow structure observed 
near the lip of the 4 :  1 contraction. 

3.1. Flow visualization 
The macroscopic effects of elasticity on the structure of the velocity field are 
observed by using the flow visualization procedure described in $2.2 .  The streamlines 
observed in a 4 : 1 contraction at the conditions De, = 0.90 and Re, = 0.008 are shown 
in figure 3 ( a ) .  At low Deborah numbers (De, < 1.0) elastic effects in the flow are 
negligible compared to viscous effects and the test fluid behaves as a highly viscous 
Newtonian liquid flowing through an abrupt axisymmetric contraction. The fluid in 
the upstream tube converges and accelerates directly towards the small tube. A very 
weak recirculation is observed in the outer corner of the large tube, as predicted by 
Moffatt (1964). The size of this corner vortex is characterized by a dimensionless 
reattachment length x = HV/2R,, where H ,  is the vertical height that the vortex 
extends upstream and R, is the upstream radius of the tube. Measurements from the 
time-exposure streak photographs at low De, give a value of x = 0.17 for all 
contraction ratios, in good agreement with the extensive experiments of Boger et al. 
(1986) and the numerical simulations of Viriyayuthakorn & Caswell (1980) and 
Kim-E et al. (1984). 

As the flow rate is increased and elastic effects in the flow become important a 
dramatic change occurs in the shape of the streamlines. The flow field at De, = 3.40 
and Re, = 0.041 is shown in figure 3(b). The weak corner vortex observed in 
Newtonian flow is greatly decreased in size and a separate intense vortex has formed 
at  the re-entrant corner where the upstream tube joins the smaller downstream tube. 
The formation of this lip vortex is observed to occur in each contraction ratio a t  a 
Deborah number De$liP) > 3.0. In addition to the formation of the lip vortex, the flow 
field shown in figure 3 ( b )  no longer monotonically converges towards the small tube : 
upstream of the contraction the streamlines near the centreline diverge and fluid 
flows out towards the stagnant corner of the upstream tube, before rapidly 
accelerating into the small tube immediately above the contraction plane. This 
phenomenon has been documented previously in tubular entry flow experiments 



Nonlinear dynamics of viscoelastic flow 423 

X 

0 1 2 3 4 5 
De, = h.j, 

FIGURE 4. The vortex reattachment length x( = H v / 2 R , )  as a function of Deborah number for each 
contraction ratio. The hollow symbols correspond to the Newtonian corner vortex and the solid 
symbols correspond to the elastic vortex which forms near the lip. 

involving highly shear-thinning viscoelastic fluids at high Re (Boger & Rama Murthy 
1972 ; Cable & Boger 19783) but not in Boger fluids. 

As the Deborah number is increased the elastic lip vortex increases in size and 
grows radially outwards towards the wall. Eventually the lip vortex fills the base of 
the large upstream tube and the flow enters the vortex growth regime in which further 
increases in De lead to a rapid increase in the reattachment length x as the elastic 
vortex expands up the wall of the large tube. The large elastic vortex observed at  
De, = 3.92 and Re, = 0.056 in the 4: 1 contraction is shown in figure 3(c). The 
reattachment length is determined to be x = 0.21 and continues to increase with De, 
until ultimately the flow becomes visually unstable. At  De, x 4.5 the reattachment 
length is determined to be x x 0.40, and the vortex oscillates in size. The vortex 
shown in figure 3(c) is distinguished from the Newtonian corner vortex shown in 
figure 3(a) by its size and also by the curvature of the vortex boundary, which is 
concave for the Moffatt eddy a t  low De, and becomes convex for the elastic vortex 
at high Deborah numbers. 

The variation of vortex size, as characterized by x, with Deborah number is shown 
for each contraction ratio in figure 4. In the vortex growth regime at high De, (solid 
symbols) the vortex size is essentially independent of /3; however, a t  low Deborah 
numbers the behaviour is more complicated. For small contraction ratios (B < 5 )  the 
size of the Newtonian corner vortex (hollow symbols) decreases from x = 0.17 as De 
increases until it  is almost non-existent when the lip vortex forms at De, = 3.0. For 
higher contraction ratios (,!I = 6 and /3 = 8 )  the corner vortex is initially the same 
size, with x = 0.17 for De, < 1 ; however, it is more effectively spatially isolated from 
the contraction lip and does not disappear following the formation of the elastic lip 
vortex. Instead both vortices coexist over a range of Deborah number until the 
elastic vortex expands outwards from the lip and engulfs the corner vortex. The 
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FIGURE 5. Centreline axial velocity v , ( O ,  5) in the large upstream tube for contraction ratios 
2 < /3 < 8, at flow conditions De, = 0.42, He, = 0.004. The velocity profiles are normalized with 
the average downstream velocity and superimpose near the contraction ( - 1 < 5 < 0). 

presence of both vortices is shown in figure 3 ( d )  for the 6 : 1 contraction a t  De, = 3.46. 
This complex dependence of vortex size on contraction ratio agrees with the previous 
investigations of Boger et al. (1986) and Boger (1987). 

Although macroscopic flow visualization provides a qualitative characterization of 
the sequence of flow transitions, from a Newtonian corner vortex to an elastic lip 
vortex and then to vortex growth, a far more detailed picture of the flow transitions 
is established by relating these global changes to LDV measurements of the local 
dynamics near the contraction lip and in the bulk of the flow. 

3.2. LDV measurements of $ow kinematics near the lip 

3.2.1, Newtonian j b w  
The axial and radial velocity components were measured in each contraction ratio 

a t  the same volumetric flow rate of 0.32 cm3/s, corresponding to downstream flow 
conditions of De, = 0.42 and Re, = 0.004. At this low De the velocity profiles 
correspond to  a Newtonian flow. The evolution of the axial velocity along the 
centreline for contraction ratios 2 < /3 < 8 is shown in figure 5. The velocity and 
axial position are non-dimensionalized with the downstream average velocity (v,), 
and the tube radius R,,  respectively. Far upstream of the contraction the flow has a 
fully developed parabolic profile, and the centreline velocity for each contraction 
ratio is vz / (vZ) ,  = 2/pz. As the fluid approaches the contraction plane the flow 
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FIQURE 6. Axial velocity profiles v,(c, -1) and (b) radial velocity profiles v,(E, -1) above the 
contraction plane at a low Deborah number, De, = 0.42, and Re, = 0.04 for contraction ratios of 
/? = 2, 3, 4 and 8. The profiles superimpose when scaled with the downstream parameters R ,  and 
<&. 

accelerates into the small tube and the data for each contraction ratio superimpose. 
Downstream of the contraction the flow again assumes a fully developed parabolic 
profile with centreline velocity W ~ / ( Z ) ~ ) ~  = 2. Radial profiles of the axial and radial 
velocity components at 5 = - 1 .O are shown in figures 6 (a )  and 6 ( b )  respectively. The 
profiles again superimpose when the velocity and position are scaled with the 
downstream tube conditions, except near the outer walls of the upstream tube. These 
results indicate that the Newtonian flow near the contraction plane is governed by 
conditions in the small tube and is relatively independcnt of the contraction ratio, /3. 
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FIQURE 7. (a) Sample time series data showing oscillations of all three velocity components near 
the lip (6 = - 1.23,c = -0.32) of the 4:  1 contraction at De, = 1.70, Re, = 0.015. ( b )  Frequency 
spectrum of the axial velocity component in (a )  ; the frequency of oscillation is f, = 0.0950 Hz. 
(c) Frequency spectrum of the radial velocity component in ( a ) ;  the frequency of oscillation is 
fi = 0.0950 Hz. 

This scaling has also been documented by Raiford et al. (1989) for axisymmetric 
contraction flows of a highly shear-thinning solution of 5 wt YO polyisobutylene in 
tetradecane. 

3.2.2.  The lip instability: 2 < p Q 5 
For moderately low Deborah numbers (De, < 1.5) the velocity components near 

the lip remain steady and two-dimensional as the flow rate through the 4 : l  
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FIQURE 8. (a) Sample time series data showing increased amplitude of oscillations in all three 
velocity components near the lip ( E  = - 1.23,c = -0.32) of the 4: 1 contraction at De, = 2.12, 
Re, = 0.016. (b) FFT frequency spectrum of the axial velocity component in (a); the frequency 
of oscillation is fi = 0.1275 Hz. (c) FFT spectrum of the tangential velocity component in (a); 
the frequency of oscillation is fi = 0.1275 Hz. 

contraction is increased. At  a critical Deborah number D e y )  x 1.5 the flow near the 
lip undergoes a Hopf bifurcation to a three-dimensional, time-dependent motion and 
oscillations develop in the axial, radial, and tangential velocity components. These 
velocity fluctuations are small in amplitude and are localized to the lip region 
upstream of the contraction plane ( -  1.5 < 6 < 1.5, - 1.5 < 5 < 0). LDV measure- 
ments further upstream and downstream of the contraction plane remain steady. 
It is emphasized that the flow visualization 'streak' photographs result in a time- 
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FIGURE 9. Frequency of oscillations in the axial velocity near the lip of the 4: 1 contraction 
( E  == 1.15,c = -0.30) as a function of the Deborah number. 

0 

FIGURE 10. Square of the amplitude of oscillations in vz near the lip of the 4:  1 contraction 
(5 = 1.15,c = -0.30) aa a function of the Deborah number. 

averaged picture of the flow field and do not indicate any change to the overall flow 
p.attern. These time-periodic oscillations are followed by using the trackers ; sample 
time series for the axial, radial and tangential velocity components near the lip are 
shown in figures 7 and 8. The time-dependent tangential velocity copponent vo that 
develops is observed to oscillate about a zero mean, as first observed by Lawler et al. 
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Q Y 2  W,) T W  N ,  w Nh - 
P (cm3/s) (9-l) ( s )  De, Re, (kPa) (kPa) 7, 

2 1.59 15.85 0.141 2.04 0.022 0.747 7.486 10.02 
3 1.23 12.19 0.147 1.79 0.017 0.583 5.062 8.68 
4 1.01 10.08 0.149 1.50 0.014 0.490 3.754 7.66 
5 1.62 16.10 0.140 2.27 0.022 0.759 7.724 10.18 

TABLE 2. Flow parameters at the formation of a time-dependent lip vortex for contraction ratios 
/3 = 2, 3, 4 and 5. The subscript ‘2 ’  denotes rheological properties evaluated at the average flow 
conditions in the downstream tube. The subscript ‘w ’ indicates the rheological properties are 
calculated at the wall shear rate in the downstream tube where pw = 4j,. The stress ratio is defined 
as N J r  = ! P l ( ~ ) ~ / ~ ( y )  and is evaluated at the downstream wall shear rate. 

(1986). The frequency of oscillation in each component is calculated by performing 
a fast Fourier transform (PFT) of the velocity data. The initial frequency of 
oscillation for each component in the 4: 1 contraction is determined from the FFTs 
in figures 7 ( 6 )  and 7 (c) to be f, = 0.0950 Hz. As the Deborah number is increased 
these velocity fluctuations grow in amplitude, the frequency of oscillation increases, 
and harmonics of the fundamental frequency appear in the FFT spectrum, as shown 
in figures 8 ( 6 )  and 8(c). 

The variation of oscillation frequency determined from FFT spectra, such as those 
in figures 7 and 8, is summarized in figure 9 as a function of Deborah number for 
/3 = 4. In addition the square of the oscillation amplitude in v, near the lip as a function 
of the Deborah number is shown in figure 10. The critical Deborah number for onset 
of periodic flow is determined accurately by fitting these data to the results of an 
asymptotic analysis for a supercritical Hopf bifurcation (Iooss & Joseph 1980) which 
predicts that the amplitude of oscillation should be of the form 

( 5 )  ~ v ( r ,  8, x ,  t )  I K (De-De(oSC))aeiwt. 

Near the onset point the data are linear in agreement with equation (5 ) ,  and 
extrapolation to Iv,( = 0 determines the critical value of De to be Depc) = 1.50 k0.02. 
The large nonlinear increase in amplitude at higher De results from the introduction 
of harmonics of the fundamental oscillation frequency. 

A similar Hopf bifurcation in a 4: 1 axisymmetric contraction was first observed 
by Lawler et al. (1986) for a less elastic PIB/PB/K Boger fluid. In sharp contrast to 
the results described here, they observed the flow to return to a two-dimensional 
steady state as the Deborah number was increased. With the PIB/PB/C14 fluid used 
here the flow remains time-dependent for all Deborah numbers greater than D e p )  
and subsequently undergoes a series of nonlinear transitions. 

Experiments in other contraction ratios indicate that the local dynamics of the 
flow transition are highly sensitive to the contraction ratio. The onset of time- 
periodic flows was detected for contraction ratios 2 < p < 5. The flow conditions and 
critical Deborah number D e p c )  at onset of oscillations are listed in table 2. The value 
of D e p )  displays a minimum at p = 4 and increases for both larger and smaller 
contraction ratios. The frequencies of oscillation near the lip for /3 = 3, 4 and 5 are 
shown in figure 11.  The critical Deborah numbers of the Hopf bifurcation are 
determined from the plots of the square of the oscillation amplitude shown in figure 
12 to be D e p )  = 1.71 and 2.20 for /3 = 3 and 5 ,  respectively. Again the oscillations 
developed in all three velocity components and remained localized to the lip region. 
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FIQURE 11. Frequency of oscillations in the radial velocity near 
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function of the Deborah number for j? = 3 and 5. 
Square of the amplitude of the oscillations in v, near the lip as a 

The flow appeared steady away from the lip with no visual changes to the global 
structure. Experiments in the 2 :  1 contraction showed a similar transition to time- 
periodic flow at De, = 2.04. No Hopf bifurcation was detected in experiments with 
contraction ratios of /? = 6 and 8 up to a critical Deborah number where the large- 
scale vortex dynamics described in § 3.3.2 became dominant. 
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FIGURE 13. Time series data showing period doubling of the oscillations in the radial velocity 
component near the lip (5 = 1.68,c = -0.30) of the 4: 1 contraction. The time series (a) at 
De, = 2.55 (Re, = 0.026) has small-amplitude oscillations, and the fundamental frequency (b) 
before period doubling isfi = 0.1275 Hz. After the period-doubling transition the time series ( c )  at 
De, = 2.62 (Re, = 0.027) shows larger oscillations, and the FFT spectrum (d )  contains additional 
spectral peaks at gl and vl. 
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FIGURE 14. Time series and frequency spectrum showing quasi-periodic oscillations in the velocity 
near the lip of t,he 5 :  1 contraction (6  = l . O O , (  = -0.5) a t  De, = 3.09, Re, = 0.034: (a )  radial 
velocity profile as a function of time; (6) FFT spectrum, f, = 0.043 Hz, fi = 0.063 Hz. 

3.2.3. Period-doubling transition : 3 < /l< 5 

As the Deborah number is increased the amplitude of the oscillations in the 
velocity components grows, and higher harmonics of the oscillation frequency 2f1, 
3f1 appear in the frequency spectrum. A subharmonic period-doubling instability is 
observed in the 4 :  1 contraction a t  De, = 2.60. This transition results in a large 
increase in the oscillation amplitude and a spectral peak at  vl which grows rapidly 
in strength to dominate the frequency spectrum. These effects are demonstrated by 
comparing the two sets of time-series and frequency spectra presented in figure 13 for 
the radial velocity component near the lip (6 = l .68,[= -0.30) of the 4 : l  
contraction. The frequency of oscillation shown in figure 13 (d )  following the period- 
doubling transition is 0.065 Hz. A similar period-doubling transition is also observed 
for p = 3 and p = 5 a t  Deborah numbers De, > 2.5.  Further increases in De, however 
did not result in subsequent period-doubling transitions and the appearance of ul 
peaks in the frequency spectrum. Instead, another Hopf bifurcation is observed in 
the flow at De, = 3.0 resulting in a quasi-periodic flow state. 
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FIIXJRE 15. Dominant frequencies in the time-dependent regimes near the lip of the 3: 1 contration 
rn a function of the Deborah number. In the quasi-periodic regime the three strongest peaks in the 
FFT spectrum are identified as : 0, f, ; 0,  fi ; 8, fl +fB. 

3.2.4. Quasi-periodic $ow near the lip : 2 < p < 5 
Quasi-periodic flow regimes characterized by two independent frequencies were 

observed in the contraction ratios 2 < p < 5 for De, > 3.0. The frequency spectrum 
shown in figure 14 for flow in a 5 :  1 contraction consists of two distinct oscillation 
frequencies (fl,f2) and a number of other peaks which can be identified as linear 
combinations of the form m, fl+m, f,, where M, and m, are integers. The two 
fundamental frequencies are determined from figure 14 to be f, = 0.043 Hz and 
fi = 0.063 Hz within the limits of spectral resolution attainable with the current 
experimental apparatus. The evolution of the dominant frequencies in the 3 : 1 
contraction from De, = 1.0-3.5 is summarized in figure 15. 

The development of a quasi-periodic state from a time-periodic regime was 
approximately independent of contraction ratio for 2 < f l <  5 and o c c u d  in each 
contraction ratio at  a Deborah number De$P) x 3.0. At this Deborah number the 
flow visualization results presented in figure 3(b) show a distinct change in the flow 
field and the formation of an intense lip vortex in the same spatial region whew quasi- 
periodic time-dependence is observed. Analysis of the videotape also shows that this 
vortex oscillates in size. LDV results for the higher contraction ratios f l =  6 and 8 
indicate that the flow is not time-dependent at  De, = 3.0 ; however, the formation of 
a steady lip vortex is still observed in streak photographs such tw figure 3 (d )  and crab 
be measured quantitatively by using the LDV system. Figure 16 shows the radial 
and axial velocity components in the 6: 1 contraction near the lip (t = - 1.50, 
6 = -0.30) as a function of Deborah number. Initially, the magnitudes of both 
velocity components increase and the radial velocity is negative indicating inward 
flow towards the throat. At a Deborah number of 2.96 the axial velocity decreases, 
and the radial velocity reverses in direction as the lip vortex forms and the fluid near 
the contraction lip flows outwards into the corners of the large tube. 
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FIGURE 16. Steady-state radial and axial velocity profiles as functions of Deborah number near the 
lip of the 6 :  1 contraction (6  = - 1.50,c = -0.30). The formation of a lip vortex a t  De, = 2.96 is 
clearly identified by the reversal in flow direction of the radial velocity component. 
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FIGURE 17. Flow transitions in the axisymmetric abrupt contraction as functions of the contraction 
ratio for 2 < /3 < 8: 0 ,  the critical Deborah number De(208C) for Hopf bifurcation to a time- 
dependent flow regime near the lip ; 0 ,  the critical Deborah number DerP) for the formation of a 
lip vortex. At higher Deborah numbers the large elastic vortex present in the upstream tube 
becomes unstable to  either a pulsing (A) or rotating (A) flow. 
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FIGURE 18. ( a )  Time series of the axial velocity on the centreline ( f ;  = 0,c = - 1.50), Re, = 0.05, of 
the 4:  1 contraction at De, = 0.4, 3.1, 3.7; (a) FFT spectrum of the time-dependent axial velocity 
shown in (a )  at De, = 3.7. 

The complex dependence of the steady and time-dependent flow dynamics on 
contraction ratio is represented graphically by the stability diagram shown in figure 
17. The critical Deborah numbers for development of time-periodic flow near the lip, 
D e p ) ,  and for the formation of a lip vortex, Deil'P), are shown as functions of 
contraction ratio. These flow transitions are considered to be two separate, competing 
modes of elastic phenomena. For moderate contraction ratios d < p < 5 the most 
unstable mode, i.e. the instability occurring at lowest De,, leads to a time-periodic 
flow regime near the lip, which is followed by development of a quasi-periodic lip 
vortex. However, for the larger contraction ratios ~3 = 6 and 8, the formation of a 
steady lip vortex (which coexists with the corner vortex) occurs Arst. 

Increasing the Deborah number beyond De!fP) resulted in growth of the lip vortex 
vertically upstream and radially outwards until at De, = 3.8 the recirculation in the 
4:  1 contraction covered the base of the large upstream tube. The increasing size of 
the lip vortex was accompanied by an expansion in the spatial extent of the time- 
dependent flow and an increase in the amplitude of the velocity oscillations. Sample 
time series of the axial velocity on the centreline near the lip of the 4 : 1 contraction 
as the Deborah number was increased are shown in figure 18. At  low De, the flow field 
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is Newtonian, and the velocity is steady throughout the upstream and downstream 
tubes. At De, = 3.10 a small time-dependent lip vortex has formed near the lip, and 
velocity data measured within the lip vortex indicate a quasi-periodic flow, as 
typified by figure 15 (a) .  The axial velocity on the centreline near the lip (5  = - 1.50) 
now contains small fluctuations about its average value ; however, an FFT of the 
time series at De, = 3.10 shown in figure 18(a) revealed no dominant frequency of 
oscillation. At De, = 3.70 the lip vortex has grown substantially in size (x = 0.12) 
and almost extends across the entire width of the upstream tube. Oscillations in the 
velocity field extend spatially throughout the throat region and the axial velocity on 
the centreline shows large-amplitude, time-dependent fluctuations. LDV measure- 
ments in the lip region a t  this Deborah number show quasi-periodic behaviour; 
however, farther from the re-entrant corner the velocity field is affected pre- 
dominantly by the large-amplitude fluctuations in the size of the lip vortex, and 
velocity measurements on the centreline indicate essentially a time-periodic 
behaviour as shown in figure 18(a). The dominant frequency of oscillation was 
determined from the Fourier spectrum in figure 18(b)  to be f = 0.1875 Hz. Farther 
upstream from the lip the flow remains steady, and LDV measurements a t  5 = - 5.0 
and - 10.0 showed no time-dependent behaviour. 

3.2.5. Aperiodic $ow: 3 < 
Upon reaching the corners of the upstream tube the lip vortex grew rapidly to form 

the large convex elastic vortex shown in figure 3 ( c )  and the time-dependent nature 
of the flow underwent a third transition. Experimental time series no longer 
exhibited clear quasi-periodic oscillations ; instead aperiodic fluctuations in the 
velocity components were observed with no well-resolved spectral peaks. This 
behaviour is demonstrated in figure 19 (a )  by the axial velocity on the centreline a t  
5 = -2.25 in the 4 :  1 contraction. The Deborah number is De, = 4.08, and the lip 
vortex has expanded upstream to a height of x = 0.21. The time series shows both 
slow and rapid fluctuations in magnitude. The FFT spectrum in figure 19 (b )  contains 
broadband noise across the spectrum with no dominant oscillation frequency. By 
replotting the data on a logarithmic scale, the level of noise measured in this 
frequency spectrum is shown to be significantly increased above the instrumental 
‘white ’ noise that is observed in the FFT spectra previously presented in the periodic 
and quasi-periodic flow regimes, particularly in the very low (<0.2 Hz)-frequency 
range. The signal-to-noise resolution of the LDV photomultipliers and the limited 
time window of observation possible with this open-flow system prevent the 
extremely long data runs necessary to quantify a chaotic flow regime in detail 
(Gollub & Benson 1980; BergB, Pomeau & Vidall986). However, it is clear that upon 
entering the vortex growth regime the flow dynamics becomes more complex than 
the quasi-periodic flow observed a t  lower values of the Deborah number. These 
velocity fluctuations near the lip persisted as the Deborah number was increased and 
as the elastic vortex increased in size. Similar FFT spectra were observed for /3 = 3 
and 5 ; however, no data could be obtained in the 2 : 1 contraction since the frequency 
trackers were unable to follow the LDV signal. I n  the large contraction ratios 
(p = 6 and 8) the flow near the lip remained steady as the Deborah number was 
increased, until the onset of the global vortex instability to  be described in 83.3.2. 

Two previous experimental investigations of flow through 4 : 1 contractions have 
used similar PIB/PB Boger fluids: Lawler et al. (1986) observed that the time- 
dependent flow near the lip reverted to steady two-dimensional flow a t  a second 
critical Deborah number, and Boger (1987) reported that the time-dependent lip 

< 5 



Nonlinear dynamics of viscoelastic Jlow 437 

0 50 100 150 200 
Time (s) 

Frequency (Hz) 

FIGURE 19. Aperiodic flow along the centreline near the lip (6 = 0 , c  = -2.25) of the 4: 1 contraction 
at De, = 4.08 and Re, = 0.061. The axial velocity (a) shows random fluctuations and the FFT ( b )  
has no fundamental frequency of oscillation, but contains broadband noise across the entire 
spectrum. 

vortex observed qualitatively at low De was followed by a steady two-dimensional 
vortex growth regime. However, in our experiments the flow in the low contraction 
ratios (p < 5 )  remains time-dependent for all De, above the critical Deborah number, 
De?). The reason for this difference is still unclear but must be related to differences 
in the rheology of the test fluids. The aperiodic oscillations in the velocity occur over 
the same range of values of /3 and De, for which diverging streamlines upstream of 
the contraction are observed (see figure 3c) .  This diverging flow regime is documented 
in more detail in 53.3.1 and did not occur in the previous investigations with PIB/PB 
fluids. These velocity fluctuations may thus result from a time-dependent instability 
connected with the development of a diverging flow structure upstream of the 
contraction plane. 

3.3. Global kinematic change5 
In addition to the development of localized time-dependent flow near the contraction 
lip, increasing the Deborah number results in modifications of the flow structure 
throughout the axisymmetric contraction. These phenomena are described in this 
section. 
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FIGURE 20. Diverging flow upstream of the contraction plane at high De, demonstrated by the 
normalized axial velocity w,(O, [ ) / ( v , ) ~  along the centreline for contraction ratios = 3, 4 and 5, 
De, = 3.7, 3.9 and 3.7 respectively. 

3.3.1. Diverging $ow regime : 2 < p < 5 
At high Deborah numbers the flow upstream of the contraction plane becomes 

divergent and the fluid upstream of the contraction plane moves radially outwards 
away from the centreline; this phenomenon is demonstrated in figure 3 ( b ,  c ) .  An 
increase in the velocity away from the centreline must result in a reduced axial 
velocity along the centreline to conserve mass flow across each plane throughout the 
upstream tube. Time-averaged LDV measurements of the axial velocity component 
along the centreline in the upstream tube are shown in figure 20 for p = 3, 4 and 5 .  
Far upstream the velocity profile remains parabolic and the normalized centreline 
axial velocity is (v , ) ,  = 2/p2, in agreement with figure 5.  As the fluid approaches the 
contraction throat it does not acoelerate monotonically but initially decelerates and 
the velocity reaches a local minimum at 6 x - 2.0. Closer to  the contraction plane the 
velocity increases rapidly. Transverse profiles of the axial velocity a t  6 = -3.0 for 
contraction ratios /3 = 3, 4 and 5 are shown in figure 21. The profiles are no longer 
parabolic but show maxima away from the centreline. Subsequent increases in the 
Deborah number do not diminish this divergent effect but result in an increase in the 
size of the elastic vortex which exists a t  these flow rates and an associated shift 
upstream in the position of the velocity minimum as shown in figure 3 ( b ,  c ) .  

As seen in figure 21, the magnitude of the deceleration associated with the 
diverging flow is strongly dependent on the contraction ratio, with the largest 
decreases in velocity occurring in the smaller contraction ratios. No velocity minima 
were observed at any experimentally attainable Deborah number in the larger 
contraction ratios (p  = 6 and 8), and the flow accelerated monotonically towards the 
throat. Although this elastic phenomenon first develops a t  Deborah numbers 
comparable with those a t  which the lip vortex forms it does not appear that the two 
effects are directly related, since the diverging flow persists into the vortex growth 
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FIQURE 21. Transverse axial velocity profiles vZ(EJ/(vJ2 at 5 = -3.00 for contraction ratios /? = 3, 
4 and 5 at the same De, as shown in figure 20. The profiles show pronounced off-centreline maxima 
which vary with contraction ratio. 

regime (see figure 3c). In addition, lip vortices have been reported in Boger fluids 
with no associated diverging flow (Boger et al. 1986) whereas a diverging flow regime 
has been observed in shear-thinning fluids with no lip vortex formation (Cable & 
Boger 1978a; Evans & Walters 1989). This is the first time that this phenomenon has 
been documented in axisymmetric contraction flow of a Boger fluid, although 
diverging streamlines have been observed by Binding & Walters (1988) in the flow 
of a PAC/CS Boger fluid through a 4: 1 planar contraction. 

The sensitive dependence of the diverging flow on contraction ratio indicates that 
flow conditions in the upstream tube play an important role in the sequence of 
viscoelastic flow transitions. In steady simple shearing flows a gradual shear thinning 
is observed in viscometric properties such as 7 and Yl. However, in uniaxial 
extensional flows, such as that along the centreline of an axisymmetric contraction, 
Boger fluids extensionally thicken and exhibit an elongational viscosity much 
greater than the viscosity measured in steady shear flow. The data for each 
contraction ratio shown in figure 20 show that the maximum extension rate 
experienced along the centreline, t. = av,/az, is almost the same for p = 3, -4 and 5. 
Thus the same degree of extensional thickening is expected in each contraction ratio, 
and the extensional viscosity behaviour of Boger fluids alone cannot be used to 
directly differentiate between the results in each contraction. However, for the same 
downstream flow conditions De, (and hence the same V,), the average upstream shear 
rate y1 is given by yz /p3 ,  and therefore differs greatly in each contraction. In addition 
the shear rate varies linearly across the upstream tube and reaches a maximum 
pl, = 4j1 at the wall. The maximum shear rate in the upstream tube and the greatest 
shear thinning in the fluid properties is experienced near the wall of the 3: 1 
contraction. In 54 we suggest that this variation in the upstream shear rate and the 
dependence of the total Hencky strain on may be important in explaining the 
appearance of the diverging flow field. 
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FIQKJRE 22. Time series and FFT spectra demonstrating different modes of oscillation for the large 
elastic vortex : (a) highly nonlinear large-amplitude oscillation in the axial velocity at De, = 4.49, 
Re, = 0.083 on the centreline (5 = 0, C = - 1.50) of the 4 :  1 contraction; (b) FFT spectrum of the 
time series in (a), which gives the frequency of oscillation as fpulse = 0.0375 Hz ; (c) time series of 
the axial velocity at  De, = 4.33, Re, = 0.055 on the centreline (6 = 0, t; = - 1.75) of the 5: 1 contrac- 
tion; (d)  FFT spectrum of the time series in (c) which gives the frequency of oscillation as 
fro, = 0.1150 Hz. 
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Q PZ 7, N I W  % Mode of 
Re, (kPa) (kPa) 7, instability B (cm”5) De, 

2 7.25 72.06 4.77 ’ 0.098 2.970 41.12 13.85 Pulsing 
3 6.91 68.75 4.70 0.094 2.855 39.41 13.80 Pulsing 
4 5.64 56.10 4.40 0.077 2.369 32.01 13.51 Pulsing 
5 4.80 47.74 4.16 0.065 2.024 26.44 13.06 Rotating 
6 6.19 61.57 4.53 0.084 2.596 34.65 13.35 Rotating 

TABLE 3. Flow conditions at  the onset of unsteady oscillations in the large upstream vortex. The 
oscillation mode observed in each contraction ratio is indicated in the last column. The subscript 
definitions are as given in table 2. 

3.3.2. Elastic vortex instability : 2 < f3 < 6 
In addition to the local time-dependent flow dynamics observed near the lip, a 

separate, macroscopic flow instability is observed at  high Deborah numbers. As the 
flow rate is increased the elastic vortex continues to grow upstream and the vortex 
size is found to correlate well with the downstream Deborah number, as shown in 
figure 2. At a Deborah number of De, = 4.4 the reattachment length in the 4:  1 
contraction has reached a maximum steady value of x = 0.53. Any further increase 
in De, results in the development of an unsteady vortex which remains symmetric 
but pulsates periodically in size. At  De, = 4.5 the reattachment length of this vortex 
gradually increases with time to a value of x = 0.73 and then rapidly collapses to a 
much smaller, less intense vortex with x = 0.48 before increasing in size again. This 
periodic pulsating of the vortex is accompanied by highly nonlinear oscillations in 
the axial velocity, as shown in figure 22(a).  The increasing size of the secondary 
recirculation in the corners of the upstream tube reduces the cross-sectional area for 
the primary flow through the contraction, and the axial velocity along the centreline 
therefore increases. When the elastic vortex stops growing in each cycle the axial 
velocity reaches a maximum and then decreases rapidly as the elastic vortex 
collapses. The FFT shown in figure 22 ( b )  reveals the relatively strong contributions 
of the first and second harmonics to the fundamental oscillation frequency 
fpulse = 0.0375 Hz. These oscillations in vortex size and axial velocity have a much 
lower frequency than the local dynamics observed near the lip in $3.3.1, and the 
period of oscillation Tpulse = l/fpulse is much longer than the characteristic relaxation 
times listed in table 1 for this fluid. This instability thus does not appear to be simply 
connected either to the lip kinematics observed at  moderate De, or to the specific 
fluid under consideration, but is a separate dynamical regime associated with the 
geometric size of the large upstream tube. 

The dynamics of this large vortex instability is highly sensitive to the contraction 
ratio ; the flow conditions at onset of oscillation are summarized in table 3. In  the 3 : 1 
contraction a slow pulsing in the vortex size, comparable with that described above, 
is observed for De, 2 4.3; however, the amplitude of the oscillations is smaller and 
the reattachment length varies between x = 0.51-0.60. The pulsing frequency is 
fpulse x 0.055 Hz. A similar weak pulsing instability is also observed for B = 2. In the 
larger contraction ratios, p = 5 and 6, a distinctly different mode of instability is 
observed. The large vortex becomes asymmetric with a reattachment length that 
varies in 8. The vortex does not pulsate and the asymmetric form of the reattachment 
length remains approximately constant in time ; however, the vortex begins to rotate 
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FIQURE 23. Time-dependent velocity profiles far upstream of the contraction plane : (a)  centreline 
axial velocity at 6 = -25 and De, = 4.34, Re, = 0.076 in the 4:  1 contraction; ( b )  FFT of the time 
series in (a), which givesfpulse = 0.0350 Hz ; (c) the centreline axial velocity far upstream at 6 = -20 
and De, = 4.33, Re, = 0.075 in the 5: 1 contraction; (d )  an FFT of the data in (c) shows no dominant 
frequency of oscillation. 
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rapidly around the upstream tube. When a longitudinal cross-section is viewed by 
using the techniques describcd in 52.4, the two sections of the corner vortex on eithcr 
side of the primary flow through the contraction alternately expand and contract in 
size as thc position of maximum vortex size rotates around the upstream tube. This 
rotating flow regime has been clearly documented in the photographs of Nguyeii & 
Boger (1979). Close inspection of the vortex dynamics on videotape reveals that  the 
actual fluid particles within the vortex have no tangential velocity and that the 
secondary flow in the recirculating vortex remains two-dimensional. The variation in 
the vortex height arises from an asymmetry that develops in the streamlines of the 
converging primary flow and which then precesses azimuthally around the upstream 
tube. This azimuthal rotation results in periodic oscillations in the axial velocity 
along the centreline ; a typical time series is shown in figure 22 (c) for flow in a 5 : 1 
contraction a t  De, = 4.33. Comparing figures 22(a) and 22(c) it is clear that the 
dynamics in the rotating and pulsing flow regimes are quite different with much 
faster oscillations observed in the 5 : 1 contraction. The fundamental frequency for 
azimuthal rotation was measured asf,.,, = 0.1 150 Hz by taking the lowest-frequency 
peak in the FFT spectrum shown in figure 22 ( d )  ; however, the first harmonic peak 
(Zf,.,,) is of comparable intensity. The oscillation frequencies for both the pulsing and 
rotating flow regimes increased slowly with increasing Deborah number. With the 
current equipment the maximum flow rate attainable gave De, x 4.7 and only a few 
data points could be obtained in each of the time-dependent regimes. No timc- 
dependent vortex dynamics were observed in the 8 :  1 contraction up to De, = 4.70; 
however, we believe that at higher flow rates qualitatively similar behaviour would 
be observed. 

The oscillations in the flow associated with variations of the vortex size are not 
confined to  the spatial region near the contraction plane, but also extend far up- and 
downstream. The axial velocity on the centreline at a distance 25R, upstream is 
shown in figure 23(a) for p = 4. Large-amplitude fluctuations in the velocity are 
observed and the frequency of oscillation shown in figure 23(b) is the same as the 
pulsing frequency fpulse observed near the throat of the contraction. The azimuthal 
rotation of the vortex that occurs for /3 = 5 and 6 results in less disturbance to the 
flow far upstream. Figure 23 (c) shows the lower-amplitude irregular disturbances 
observed in the centreline velocity 20R, upstream of the contraction plane for 

= 5 a t  the same flow conditions as for figure 23(c). The FFT of this time series is 
shown in figure 23 ( d )  and identifies some low-frequency components, but no 
clear fundamental oscillation frequency. 

3.4. The effect of lip curvature onJlow dynamics 
In  previous qualitative investigations of viscoelastic flow through contraction 
geometries the precise shape of the re-entrant corner at the contraction lip was found 
to have a pronounced effect on the flow characteristics. Rounding the corner resulted 
in a reduction in the size of the large corner vortex observed in the axisymmetric 
contraction flow of Boger fluids (Walters & Webster 1982) and was reported to 
increase the stability and reduce the size of the vortex in planar contractions (Evans 
& Walters 1986, 1989). A smoothly curved lip entrance was made with a fixed radius 
of curvature, W, to investigate the effect of removing the sharp re-entrant corner on 
the local flow dynamics near the lip. The dimensionlcss radius of curvature of the 
curved lip is 9 / R ,  = 0.5 and is the same as that employed by Walters & Webster. 
However, t o  prevent the introduction of asymmetry into the flow and the associated 
distortion of the global flow field describcd by Evans & Walters, the entire 

I .i F I. >I 223 
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FIQURE 24. Viscoelastic flow through a 4: 1 contraction with a smoothly curved entrance lip: (a) 
detailed view of the weak Moffat eddy; Ue, = 0.56, Re, = 0.005 (exposure time T = 128 s); (a) 
reduced corner vortex size; De, = 3.24, Re, = 0.031 (T = 64 s);  (c) formation of a highly unsteady, 
time-dependent vortex near the lip entrance : De, = 4.65, Re, = 0.091 (T = 2 8 ) ;  (d )  elastic vortex 
growth regime; De, = 5.32, Re, = 0.137 (T = 4 s). 
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FIGURE 25. Comparison of the dimensionless vortex reattachment length (x) for flow through a 
4 1 contraction with a sharp lip ( p  = 4) and with a smoothly rurved lip with radius of curvature 
W = 0 . 5 4  (/J' = 4c). The hollow symbols correspond to the shrinking corner vortex, and the solid 
symbols represent the elastic vortex which develops near the lip edge. The arrows connecting 
data points at high De, indicate that the large vortex has hecome unstable and pulsates in size. 

circumference of the re-entrant corner was smoothed, instead of only a 180" arc. The 
results presented here demonstrate that the flow transitions observed in an abrupt 
contraction are still present for flow through a contraction with a rounded lip, but 
that the critical values of Deborah number for each transition are increased because 
of the less severe flow conditions near the re-entrant corner of the smooth geometry. 

Rounding the lip corner is found to have little effect on the flow characteristics a t  
low De,. A close-up of the flow patterns near the curved lip in a 4 :  1 contraction at 
De, = 0.56 is shown in figure 24(a). The flow converges radially towards the 
contraction mouth and a weak recirculating eddy, similar to  that observed with the 
sharp lip in figure 3(a) ,  is observed in the stagnant corner. The dimensionless 
reattachment length for the corner vortex is measured as x = 0.17. Axial and radial 
LDV scans are not presented here because the data superpose with the results shown 
in figures 5 and 6, except for the region extremely close to  the smoothed corner ( -  1.5 

As the Deborah number is increased the consequences of smoothing the lip corner 
become more pronounced. The variation in vortex size (x) with De, is compared in 
figure 25 for flow through the 4 :  1 contraction with a sharp lip (/3 = 4) and with the 
curved lip entrance (p  = 4,J. At low Deborah numbers the reattachment length of 
the weak corner vortex for both lip geometries was x = 0.17. In the sharp lip 
geometry the corner eddy gradually decreased in size, and a separate lip vortex 
formed at De, = 3.0 which grew rapidly in size and engulfed the diminished corner 
vortex. The vortex then grew into the upstream tube and ultimately began to pulse 
in size a t  De, = 4.4 as described in t33.1-3.3. 

Similar trends were exhibited in the curved lip geometry ; however, removing the 
lip singularity shifted the transitions to higher De,. The corner vortex decreased in 

< 6 < 1.5, -0.3 < 6 < 0). 
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FIGURE 26. Time-dependent oscillations in the velocity near the lip of the 4: 1 contraction with a 
curved entrance lip (p  = 4,) : (a) the radial and axial velocity components near the lip entrance 
(6  = 1.50,c = -0.90) at De, = 5.02 and Re, = 0.088; ( b )  FFT of the axial velocity component 
which gives the frequency of oscillation as f,,,,, = 0.390 Hz. 

size very gradually and had effectively disappeared by De, = 4.5 when a clearly 
distinct lip vortex formed. The flow field a t  De, = 3.24 is shown in figure 24(b). The 
weak eddy in the outer corner has greatly decreased in size, no lip vortex can be 
distinguished, and fluid flows smoothly around the curved lip into the downstream 
tube. LDV measurements also show that the flow remains steady and axisymmetric. 
The first flow transition observed in the curved lip geometry was the formation of 
a small, highly unsteady vortex near the smoothed entrance to  the small tube a t  
De, = 4.50. This time-dependent vortex expanded outwards across the base of the 
upstream tube and is shown in figure 24(c) a t  De, = 4.65. The lip vortex oscillated 
rapidly in size and was difficult to resolve with the flow visualization procedure. 
Figure 24 (c) is included as the first graphic evidence of the formation of an elastic lip 
vortex in a contraction geometry with a smoothed lip entrance. Detailed analysis of 
the videotapes confirms unequivocally that this vortex originates a t  the lip entrance 
and not in the stagnant outer corners of the large tube. The oscillations in the size 
of the lip vortex are accompanied by rapid periodic fluctuations in the axial and 
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FIGURE 27. Normalized axial velocity v,(O, $/(vz), along the centreline of the 4 :  1 contraction with 
a curved entrance lip (/3 = 4,) : at De, = 0.42, Re, = 0.004 (0) the flow converges smoothly towards 
the small tube and the velocity increases monotonically; a t  De, = 4.60, Re, = 0.08 (m) the flow 
upstream of the contraction diverges from the centreline and the axial velocity shows a local 
minimum at 5 x -2.0. 

radial velocity components near the lip, as shown in figure 26(a) .  Both velocity 
components oscillate with the same frequency which was determined from the FFT 
data in figure 26(b)  to be f,,,,, = 0.390 Hz. This frequency is much higher than the 
fundamental frequencies measured in any of the flows with sharp re-entrant corners. 

The time-periodic lip vortex expands outwards with increasing De, until it reaches 
the upstream tube wall a t  De, = 5.20. A t  higher Deborah numbers the vortex begins 
to grow upstream as shown in figure 24(d) .  I t  is also temporally stabilized, and the 
flow returns to a steady two-dimensional state. At De, = 5.5 the vortex height 
reaches a maximum size x = 0.45 and begins to oscillate in a way similar to that 
described in 53.3.2. The frequency of vortex oscillation is once again found to be far 
more rapid (f, x 0.40 Hz) than that observed for a sharp-lipped entrance. 

At high flow rates the streamlines in the curved lip geometry were also observed 
to diverge outwards from the centreline, as previously described in 53.3.1 for abrupt 
contractions. Smoothing the re-entrant corner was found to delay this transition 
and, as may be seen by examining figures 24(c) and 24(d), the development of 
diverging flow does not occur until De, 2 4.5. Sample LDV measurements of the 
axial velocity profile along the centreline are shown in figure 27. A t  low De, the 
velocity monotonically increases as the fluid approaches the contraction plane and 
reaches a fully developed parabolic velocity profile within one small-tube radius 
(6 = + 1) downstream. A t  De, = 4.60 the data show a local velocity minimum above 
the contraction entrance at 6 x - 2.0 and a small velocity overshoot along the 
centreline just downstream of the contraction at y = + 0.70. 



Nonlinear dynamics .f viscoelastic $ow 449 

4. Summary and discussion 
The experiments described here demonstrate a rich variety of nonlinear fluid 

mechanics in the contraction flow of this particular viscoelastic fluid. Flow transitions 
involving both steady-state, two-dimensional and time-dependent, three-dimen- 
sional motions have been documented as a function of the Deborah number of the 
flow and of the contraction ratio. These results are summarized on the transition 
diagram, figure 17, and give a rational description of the evolution of the dynamics 
with De, and p. 

Any theory for describing flow transitions in the contraction geometry must 
produce stability curves with at least the same qualitative dependence on De and p 
for fluids with the same rheology. Moreover, the flow transitions for other viscoelastic 
fluids must be described by qualitatively similar transition curves that may be 
shifted by differences in the material properties of the fluid. One of the most 
important challenges is to understand the impact of fluid rheology on the details of 
the flow transitions, i.e. on the shapes and locations of the transition curves in figure 
17. Both the shear and extensional characteristics of the fluid are no doubt 
important. The variation of De(OSc), i.e. the critical Deborah number (based on the 
downstream flow conditions) for onset of the lip instability, with contraction ratio 
suggests that the upstream flow conditions also play an important role in the 
dynamics observed in the lip region. 

The effect of shearing in the upstream tube is characterized by the wall shear rate 
plw = 4j,/$. It is less clear which extensional parameter should be employed to 
characterize the behaviour observed in each contraction ratio. The LDV data 
presented in figures 5 and 20 show that near the contraction plane the fluid 
experiences approximately the same extensional strain rate C in each contraction 
ratio a t  the same value of De,. This suggests that the total extensional strain e may 
be a more appropriate measure for the flow as suggested by Boger (1987). The total 
Hencky strain experienced by fluid elements moving along the centreline is 

Thus the upstream shear rate and total extensional behaviour are two competing 
influences which vary quite differently with contraction ratio. For a given De,, low 
contraction ratios will produce more highly distorted molecules in the upstream flow 
owing to shear, whereas higher contraction ratios will produce greater elongation of 
the macromolecules because of the larger Hencky strains. The differences in the flow 
caused by changing contraction ratio can be explained qualitatively in terms of the 
relative importance of shear and extensional characteristics of the fluid. 

In all contraction ratios the flow structure changes from a Newtonian-like pattern 
as the Deborah number is increased. The shape of the weak corner eddy observed in 
the outer corner of the upstream tube becomes convex, the intensity of recirculation 
increases, and the centre of rotation shifts towards the centre of the tube as 
previously described by Boger (1987). In low contraction ratios (/3 < 5 )  the weak 
recirculation in the corner (figure 4) collapses and a time-dependent lip vortex 
develops that is clearly isolated from the outer tube walls. As shown in figures 3(a)  
and 24(a), the Moffat vortex is a weak recirculation in the outer corner of the 
upstream tube with a concave boundary separating it from the primary flow through 
the contraction. At higher De, this corner vortex has almost completely disappeared 
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and fluid streamlines near the outer walls extend down to the contraction plane, as 
shown in figurcs 3(8)  and 24(6). The large elastic vortex that dtvelops and grows 
upstream a t  higher De, is shown in figures 3(6) and 2 4 ( c )  to originate in the 
immediate vicinity of the re-entrant lip corner and subsequently expands outward to 
the outer corner as the Deborah number is increased. This isolated lip vortex gives 
rise to the complex dynamics documented in 333.2 and 3.4. At higher Deborah 
numbers, the significant shear rates experienced in the upstream tube for small p will 
lead to a shear thinning in the fluid elasticity. This shear thinning ncar the wall, 
coupled with extensional thickening along the centrclinc may explain why the flow 
upstream develops the diverging streamlines documented in figurcs 3 ( c )  and 18. As 
the contraction ratio is increased the shear rate upstream rapidly decreases leading 
to less shear thinning and a decrease in the diverging flow. Unfortunately, to 
quantify these competing effects rcquires accurate experimental measurements of 
the extensional behaviour of elastic liquids and of the stress distributions throughout 
the contraction gcometry. 

In the larger contraction ratios (/3 2 6) the centre of rotation of the corner vortex 
also moves inwards as the Deborah number increases ; however, the significantly 
lower shear rates in the upstream tube and the higher extensional strain prevent 
separation of the corner vortex and lip vortex. The recirculation extends across the 
complete contraction plane, as shown in figure 3 ( d ) ,  and the flow remains steady and 
two-dimensional. The presence of this recirculation coupled with the much lower 
shear rates in the upstream tube prevent the development of diverging streamlines, 
and the flow converges radially into the downstream tube at all De, experimentally 
attainable. 

The differencw in the dynamics of lip vortex formation between €'AC/CS and 
PIB/PB Boger fluids reported by Boger and coworkers (Boger el al. 1986; Boger 
1987) must arise from differences in the fluid rheology. The stability diagram for 
contraction flow of PAC/CS fluids may be similar to the one shown schematically in 
figure 17; however, the neutral stability curve for onset of the lip instability and 
subsequent development of an isolated time-dcpendent lip vortex must be shifted to 
the left with a minimum ncar p = 2 .  Time-dependent flows will only be observed in 
very small contraction ratios and for /3> 4 the first flow transition will be 
development of a lip vortex that extends across the contraction plane and coexists 
with the corner vortex. Verification of such arguments requires LDV experiments in 
entry flows of PAC/CS fluids and reliable experimental data on the extensional 
properties of both fluids. 

Substantial vortex growth was observed for all contraction ratios 2 < p < 8. In  
addition, the flow visualization results have shown that in the low contraction ratios 
(p  < 5) this large elastic vortex does not develop simply from an expansion of the 
weak Kewtonian corner eddy that is observed a t  low Deborah numbers. The 
upstream growth of the large elastic vortex (x) in each contraction is found to 
correlate well with the downstream Deborah number De,, in agreement with the 
comprehensive experiments of Bogcr et al. (1986) ; however, this relationship does not 
explain the origin of the large vortices. Experiments with polymcr melts (White & 
Kondo 1977/78; White & Baird, 1986; Piau, El Kissi & Tremblay 1988) indicate that 
vortex growth occurs when the fluid exhibits a large extensionally thickening 
elongational viscosity. This picture is consistent with the limited elongational 
viscosity data that is available for Boger fluids ; recent experimental data for 
polyisobutylcne-based Boger fluids suggest that  the Trouton ratio varies from 100 to 
1000 (Waltcrs 1989). The nonlinear multimode constitutive equations which have 
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been accurately fitted to both steady and transient shear flow rheological data for the 
PIB/PB Boger fluid used in these experiments also predict large Trouton ratios in 
the range 1000-3000 (Quinzani et al. 1990). 

The correlation of vortex growth with extensional properties, however, fails to 
explain the anomalous behaviour of Boger fluids in planar geometries. Experiments 
with polymer melts show that fluids which exhibit high extensional viscosities or 
unbounded stress growth give rise to substantial vortex growth in both planar, slit 
dies (White & Baird 1986) and in tubular, capillary dies (White & Kondo 1977/78). 
The picture is similar for semidilute, shear-thinning polymer solutions ; the 
measurements of Jones et at?. (1987) show extensional thickening in both the planar 
extensional viscosity Tp and the uniaxial extensional viscosity TE, while the 
experiments of Walters & Webster (1982) show that vortex growth also occurs in 
both planar and axisymmetric geometries. However, despite evidence that Boger 
fluids exhibit significant strain-rate thickening in both Tp and VE (Jackson et al. 1984 ; 
Williams & Williams 1985), the flow visualization results of Walters and coworkers 
(Walters & Rawlinson 1982; Walters & Webster 1982; Binding & Walters 1988) have 
clearly shown that Boger fluids do not show any vortex growth in planar contractions. 
Detailed LDV and birefringence measurements for the flow of Boger fluids through 
planar contractions are required to explain this dichotomy. Little is known about the 
presence of instabilities in the planar geometry, but once again flow conditions 
upstream of the contraction plane must be important : for a given contraction ratio 
p, the upstream shear rate in a planar contraction will be higher and the Hencky 
strain will be lower than in the equivalent axisymmetric contraction. 

At  high Deborah numbers the large elastic vortex becomes unsteady and 
undergoes further flow transitions to macroscale time-dependent motions. By 
combining LDV velocity data and flow visualization we have been able to quantify 
two distinct modes of oscillation which arc shown in figure 17. In low contraction 
ratios (B = 2,3,4) the elastic vortex remains axisymmetric but slowly pulses in 
vertical height with a frequency fpulse x 0.04 Hz, whereas in the higher contraction 
ratios (p = 5,6) a more rapid azimuthal rotation of the vortex (frat x 0.10 Hz) is 
observed. This azimuthal ‘spiralling flow’ has previously been observed in the 
contraction flow of shear-thinning fluids at high Reynolds number (Rama Murthy 
1974; Cable & Boger 1979; Yoganathan & Yarlagadda 1984), and in the flow of a 
PAC/CS Boger fluid through a 7.675: 1 axisymmetric contraction by NguyGii & 
Boger (1979). In  the previous investigations little quantitative information on the 
vortex dynamics was presented. However, the frequency of oscillation was found to 
increase with flow rate and to be comparable with the values presented here. Cable 
& Boger (1979) reported unsteady flow of a shear-thinning polyacrylamide through 
a 4:  1 contraction with a spiralling frequency of 0.3 Hz at  a downstream wall shear 
rate of yw = 590 s-l which increased to 0.8 Hz at yw = 2500 s-l as the flow rate was 
increased. 

As we have shown, these large vortex oscillations severely disturb the velocity field 
throughout the upstream and downstream tube and have often been compared to the 
instabilities encountered in the extrusion of polymer melts through a die : periodic 
oscillations develop in the die reservoir upstream of a contraction at stress levels in 
the die land of approximately 10, kPa and result in helical distortion of the extrudate 
(see for example den Otter 1970; Ballenger & White 1971 ; White 1973). The data in 
table 3 for the 4 : 1 contraction show that the critical Deborah number for onset of 
vortex oscillation is De, = 4.40 (Re, = 0.077), corresponding to a wall shear rate 
pw = 224 s-l and a wall shear stress of 7, = 2.38 kPa. Owing to the much lower 
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viscosity of polymer solutions the magnitude of the wall shear stress we observe at the 
onset of vortex oscillation is almost two orders of magnitude smaller than that 
observed in polymer melts and does not appear to be a good criterion for the 
development of flow instabilities. An alternative criterion that has been proposed is 
a critical value of the stress ratio N J T  = Yly/r evaluated at the wall shear rate in 
the downstream tubc (Pctrie & Denn 1976; Cable & Boger 1979). The stress ratio is 
directly proportional to our definition of the Deborah number De, in equation (3) and 
the critical value of the stress ratio a t  the onset of vortex oscillations is listed in table 
3 for each contraction ratio. Flow transitions to  a spiralling vortex regime have been 
observed at stress ratios of 5.3 for a monodisperse polystyrene melt (Valchopoulos & 
Alam 1972), between 4.5 and 5.5 for a PAC/CS Boger fluid (NguyGi & Boger 1979) 
and at a stress ratio of 5 for shear-thinning polyacrylamide solutions at low Reynolds 
number (Cable & Boger 1979). The critical stress ratiosNl,/7, given in table 3 for our 
PIB/PB/Cl4 solution are larger but of a similar magnitude to  those presented in the 
previous investigations. In all of these studies the onset of vortex oscillations is found 
to occur in thc ‘shear-thinning’ region where the stress ratio is a vcry weak function 
of shear rate. In this region, shear thinning results in a rapid decrease in the fluid 
clasticity (as measured by Y,)  and inertial effects become increasingly important. 

Although we have not been able to extend our experiments beyond De, z ti in any 
contraction geometry, it should be noted that further transitions have been reported 
in viscoelastic contraction flows at higher flow rates. Boger & NguyG observed a 
transition at a wall shear rate y ,  of 300 s-l from a spiralling vortex to a helical flow 
regime which combines elements of both of the oscillatory modes we have documented 
above. The large vortex becomes asymmetric, pulses vertically in height and also 
rotates in the azimuthal direction. Fluid particles thus follow the path of a helix into 
the downstream tube. At higher shear rates (Y, = 2895 s-l) the oscillations in the 
upstream tube have been observed to become aperiodic for a shear-thinning polymer 
solution (Rama Murthy 1974). Similar large-amplitude fluctuations occur in the 
extrusion of polymer melts and may result in gross distortion of the extrudate or 
‘melt fracture ’. At still higher shear rates (p, z 5000 s-l) Rama Murthy has reported 
a second stable regime with an extremely large steady corner vortex. 

Our experiments have shown that rounding the sharp re-entrant lip corner does 
not prohibit the development of elastic phenomena such as a lip vortex or diverging 
streamlines above the contraction plane. The flow transitions are merely shifted to 
higher Deborah numbers. An oscillating lip vortcx i s  still observed in the 4 : l  
contraction geometry with a smoothly curved lip, although the specific dynamic 
behaviour is significantly altered from that observed with the sharp lip. This suggests 
that the formation of an elastic lip vortex in axisymmetric contraction flows of Boger 
fluids reported here and by previous authors (Lawler et al. 1986; Boger et al. 1986; 
Boger 1987) is not directly related to  the presence of a singularity in the flow, but 
rises from the accelerating flow near the corner. Smoothing the corner reduces the 
local extension rate for a given De, and climinatcs the lip vortex, as observed by 
comparing figures 3(6)  and 24(6).  However, increasing the Deborah number in the 
curved lip geometry increases the extension rate and stress level near the corner and, 
at  a sufficiently high valuc, a lip vortcx similar to the one documented in the sharp 
lip geometry results. Experimentally the reduction in stresses near the lip is 
manifested as a lower pressure drop across the smoothed contraction entrance. 
Although we are not able to measure the entrance pressure drop explicitly with our 
apparatus, we found that for a fixed maximum pressure driving force, AP = 200 Pa 
(30 p.s.i.), a higher maximum De, could be achieved in the curved lip geometry (see 
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figure 25). A further set of experiment,s is envisaged in which the entrance pressure 
drop and the critical Deborah number for formation of a time-dependent lip vortex 
are measured as the radius of curvature of the lip is varied. 

Other modifications to  the abrupt contraction geometry have been investigated in 
the literature, including tapering the die entrance to produce a conical converging 
entrance into the downstream tube. This modification to the local flow near the 
corner results in similar changes of the viscoelastic flow transitions to the ones we 
have observed by curving the lip : in polymer melts conical entrances lead to smaller 
amplitude oscillations of a higher frequency than those observed in a corresponding 
abrupt geometry (Bagley & Schreiber 1961 ; den Otter 1970) and in polymer solutions 
a lip vortex near the tapered re-entrant corner is still observed (Evans & Walters 
1989). The nonlinear transitions leading to elastic vortices may be common to all 
viscoelastic flows with high extensional strains which result in significant elongation 
to the polymer chains and the development of large normal stress components in the 
fluid. 

Our results vividly demonstrate the importance of flow near the lip of the 
contraction on the quantitative details of the dynamics of viscoelastic entry flows. 
Although a complete understanding of the relationship between these flow transitions 
and the details of the fluid rheology must await accurate numerical calculations, our 
results and the discussion of previous observations clearly show that generic flow 
transitions do exist in these entry flows and that the particular ordering of the 
transitions is a strong function of the fluid rheology. 

Although numerical simulations of viscoelastic flow through abrupt contractions 
with a variety of differential constitutive equations have been presented, these 
calculations are plagued by convergence problems associated with the large velocity 
gradients and stresses near the re-entrant corner (see for example Mendelson et al. 
1982 ; Lipscomb, Keunings & Denn 1986; Keunings 1987). Whether these difficulties 
are the results of computational difficulties or the inherent lack of integrability of the 
constitutive equations in the presence of a singularity is an unresolved problem; 
however, calculations with a model constructed to give an integrable singularity do 
converge with mesh refinement to high De (Coates et al. 1991). Marchal & Crochet 
(1987) have presented steady-state, finite-element calculations with an Oldroyd-B 
fluid model for flow through a 4 :  1 axisymmetric contraction up to a De, of over 50 
and see the formation of a large vortex in the upstream tube a t  very high values of 
De. Unfortunately, insufficient detail is given to  determine whether the vortex grew 
out of the Newtonian Moffat eddy or from an elastic vortex originating near the lip. 
This detail is important in determining the reason for the order of magnitude 
discrepancy in De between numerical simulations and experiments for a given vortex 
size (Crochet 1988). 

The steady-state calculations of Coates et al. for the modified upper-convected 
Maxwell model developed by Apelian, Armstrong & Brown (1988) show the 
spreading of the Moffatt eddy present for the Newtonian flow and a shift in the centre 
of rotation towards the contraction lip as the Deborah number is increased, but do 
not show the formation of an independent elastic vortex near the lip. This is not 
surprising because the elastic lip vortex is preceded in the experiments by the 
transition to time-periodic flow near the lip. Calculations of time-dependent 
viscoelastic flows are just beginning (Northey, Armstrong & Brown 1990) and are 
being used to explore flow transitions in other geometries. Time-dependent, and 
probably three-dimensional, flow simulations will be needed to unravel compu- 
tationally the details of viscoelastic Contraction flows. 
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